
(Refer Slide Time: 36:52)

Now, we are going to take two examples; in one example we will show that what are the

advantages of having three buses and another case we will show that we do not get so much

advantage, if you are considering a multiple bus architecture. Two extremes that means two

different instructions we will take and show, but for most of the cases we are always going to

have an advantage, because that is very obvious because if you have multiple buses things will

go parallelly, but for one or two stray examples we can see where the advantage is not there in

fact, you are having more hardware, but still the number of stages are not reducing.

So, the first case we are going to take is add 𝑅1 into 𝑅2. So, what is the thing? So, two variables

already available in 𝑅1 and 𝑅2 and then one you have to do it. So, first is you have to fetch the

instruction. So, how do you fetch the instruction? Basically program counter output value will

go to memory address register in, that is as simple as for single bus architecture then you put

the memory in read mode here you select 0; that means, you want to add the constant and

increment program counter and add. So, what this step does? Already I have discussed so many

times in some previous units, that program counter value is the address where the instruction

is there that you put in the memory address register, make the memory to read mode, select is

0 that you have to add the constant and make it to add mode.

But if you look at a single bus architecture, we had another signal that is called 𝑍𝑖𝑛. Because

the output of program counter plus constant has to store in a separate temporary register which

we call it Z or Y and we have to wait till this step is over then only you can write the value to

770

the program counter. But in this case as we have already seen we do not require any kind of a

temporary register. So, we do not have anything called 𝑍𝑖𝑛 or 𝑌𝑖𝑛 something like that to hold

the value.

So, what happens we will go to the figure and see what happens basically? So, the program

counter is going to feed to the memory address register, this is the first step which can be done

directly, which we are going through let me let me just erase it basically we are doing it through

bus B.

(Refer Slide Time: 38:58)

So, PC out is we are going we are basically doing add 𝑅1 and 𝑅2.

So, program counter out is going to get MAR in that is done then we are going to select this

equal to 0, so that the constant goes over here and program counter of course, if you see we are

also using it to give it to the value here. So, this is equal to PC. So, if you can see the program

counter is connected to bus A, program PC value is going to bus B and we are feeding it to

memory address register and also we are feeding it to the second component of the ALU.

So, therefore, output of the PC is connected to bus B and memory address register is taking the

value from bus B. So, the as I was saying that slightly sometimes you have to think that if you

are instead of doing this if you are taking the value from bus A that will not be a very good

design, because most of the time the program counter value is taken as the input to the memory

771

address register. So, therefore, we will whichever output bus you are dumping the value of

program counter, that should be considered as an input to the memory address register.

So, even if I can take the input from here, but we are not doing it, because the PC is writing

through bus B; but it can be done if you are sorry it can also be done, but if you have to you

have to take the output for program counter through bus A, you have to disconnect this line

and you have to disconnect this line.

So, any option you can take. So, as I told you this is a very flexible architecture you can have

your own design in this case we are taking this. So, the program counter value is going to come

to the memory address register, same time it is going to B and you are taking 𝑠𝑒𝑙𝑒𝑐𝑡 = 0

memory is in add mode and here is equal to PC plus constant is already there, and you can see

and it is already feeding back to the program counter. So, there is no need to store anything.

So, program counter out, you will select 0, memory address register in and at the same amount

of time sorry and same amount of time you can say that the addition is being done. So, just you

can update the value of PC through bus C. So, in a single step we are able to do it. So, this is;

what is the stage PC Program counter out, memory address register in, read the memory, select

0, because PC plus constant and add it, there is no concept of any temporary register to hold

the value of 𝑃𝐶 = 𝑃𝐶 + 1.

(Refer Slide Time: 41:15)

772

Next stage is simple you have to make PC in read the value of output to the PC, and wait till

the memory response. And if you look at the single bus architecture, these things were very

similar you have to read the value of PC, WMFC, but also you had a sin single instruction

called 𝑍𝑜𝑢𝑡. 𝑍𝑜𝑢𝑡 will go to the value of PC in, but here PC in will not require any 𝑍𝑜𝑢𝑡, because

already bus C is carrying the value of the new value of the program counter. So, again I will

look back the figure and then it will be clear.

So, in this case what happens we are not having any temporary variable out which is going to

the PC in, here directly you just make PC in PC in. So, whatever the value is in C will directly

go over here. So, one control instruction is saved in this case and of course, WFMC same in

both the case, because you want to read from some memory you have given the value to the

memory address register. So, sometime you have to wait till the value comes from the memory

bus and it will be dumped to the memory address register. That is the instruction add 𝑅1 and

𝑅2 will come to memory data register after a wait of some amount of time.

Then next what is going to happen? The memory register data will be out and it will go to the

instruction register and this step will be very very similar to the single bus architecture. So, this

is your point, memory data register out, instruction register in it will be also similar for a single

bus architecture, because we are not handling as I told you we have a single memory and we

are not having handling any kind of multiple instructions together.

(Refer Slide Time: 42:47)

773

Now, let us see we have to now do the real addition? So, if you look at it. So, what is the

addition? So, we are assuming that the two registers 𝑅1 and 𝑅2 already has the value, and the

instruction that is 𝑅1 𝑎𝑑𝑑 𝑅1, 𝑅2 is going to the instruction register from instruction register it

goes to the instruction decoder decoding has been done, and it will have to generate the signals.

So, what it has to generate? Register value 𝑅2, register value 𝑅1, they have to be dumped to

two different buses they have to be added and the value will be out. So, very simple 𝑅2𝑜𝑢𝑡,

𝑅1𝑜𝑢𝑡𝐵.

So, now that means, what as I told you here we have to observe that basically here the signals

are 𝑅2𝑜𝑢𝑡𝐴 and 𝑅2𝑜𝑢𝑡𝐵, unlike in a single bus architecture you had something called 𝑅𝑜𝑢𝑡 𝑅1𝑜𝑢𝑡,

𝑅2𝑜𝑢𝑡, 𝑅3𝑜𝑢𝑡, here we have 𝑅𝑜𝑢𝑡𝐴 and 𝑅𝑜𝑢𝑡𝐵 now why they are different because the register

𝑅_2 can give the value to two different ports port A and port B there are two different buses.

In this case 𝑅2 is giving the value at A and 𝑅2 is giving the sorry 𝑅2 is giving the value at A

and 𝑅2 at A and 𝑅1 at B; that means, there are two wires that is A and B this is two buses

basically 𝑅2 is giving at A and 𝑅_1 is giving at B. So, simultaneously two datas are available

there and these are basically if you look at the figure they are going to the two different ports

of the ALU and you make 𝑠𝑒𝑙𝑒𝑐𝑡 = 0 that is very obvious, because in this case you are not

taking PC increment, but you are taking the operand 0 and you have a add.

So, you have to very nicely you have to observe that we do not have to store the output; this is

directly it will directly go to bus C. So, you need not have to store any temporary variable over

here because we have directly two buses available which can give input to the ALU, and also

the output that is equal to 𝑅1 plus 𝑅2 can directly go and feed bus C. So, you also do not require

any kind of a temporary registers over here. So, those things are not required.

Now, so, this is the same thing we are doing, we are taking two wires A and B, and dumping

the values of 𝑅2 and 𝑅1 and making the add operation. Now if you look at a single bus

architecture, it would be slightly more complicated.

774

(Refer Slide Time: 45:10)

So, what we have to do? We have to take 𝑅2𝑜𝑢𝑡 and 𝑌𝑖𝑛. So, what was that? We have to take

the value of 𝑅2 and store in a temporary register that is actually equal to Y if you remember it

is a temporary register Y we are now having the value of 𝑅2 over here one step is gone.

Next step you are connecting 𝑅1 here directly to the bus then here you are going to have the

answer that is 𝑅1 + 𝑅2. But then again we require to store this in a temporary register and in

third stage only you can write back the value using the bus this is the single bus. So, first one

you will store the value, then the second stage you do the add and you write in the temporary

variable and finally, only after this one finally, you have to make sorry finally, basically the

content of 𝑅2 and content of will be stored in the register 𝑍𝑖𝑛, and then this Z this temporary

register Z, the third stage can only dump the value to wherever required.

But in this case if you look at there is nothing called such type of any registers, you dump the

value of v and 𝑅1in bus A and bus B and just add it the value will be available in the memory

register C. So, again let me just again look back the figure. So, what I am doing. So, may be

consider this as register 𝑅1. So, one register 𝑅1 will dump the value here that is 𝑅1𝑜𝑢𝑡𝐴. So, that

is may be saying 𝑅1𝑜𝑢𝑡𝐴 or 𝑅1𝑜𝑢𝑡𝐵; that means, in which bus they are going to give the output.

775

(Refer Slide Time: 46:25)

So, we can also have 𝑅1𝑜𝑢𝑡𝐴, 𝑅1𝑜𝑢𝑡𝐵; that means, in that case both the A and B will have the

value from the register same register that also can be done, but in this case 𝑅1 out A may be

the instruction another will dump the value of here. So, in our example I think it was two

anything is ok. So, 𝑅1𝑜𝑢𝑡𝐵. So, in this case 2 and then this is going to have the value of register

𝑅1 this is going to have the value 𝑅2 and if you look at. So, this one is going over here, B is

going over here both the operands are here and the output 𝑅1 + 𝑅2 is likely available the output.

So, now the instruction was add 𝑅1 𝑅2. So, very simple the value is already available at C, just

write the next control instruction will be that is will be registers 𝑅1, and you have to make in

port C or in that is this value will be directly going to register 𝑅1 in this port thus after this one

more inst control signal required will be 𝑅1𝑖𝑛𝐶 and basically you are done.

So, if you look at it ok. So, this was the case. So, we have selected addition is being done, but

in case of single bus more number of stages as we have seen more in for more number of

intermediate registers and finally, you just put 𝑅1 in because this is a single 𝑅1.

776

(Refer Slide Time: 47:47)

So, 𝑅1𝑖𝑛; that means, the value of bus C will go to basically your register 𝑅1.

But in case of a single bus architecture, you will be 𝑍𝑜𝑢𝑡 plus 𝑅𝑖𝑛; that means, now the

intermediate value was stored in Z. So, it has to be dumped to 𝑅𝑖𝑛. In this case the value is

available in already bus C and it can be given. So, if you study here we will save actually one

control step for addition and of course, the overall steps will be reduced at the same time we

do not require any kind of internal CPU registers explicitly some temporary registers are

avoided and so the less number of control signals are generated.

So, this instruction shows a very explicit advantage of using a multiple bus architecture for

most of the designs you will for most of the instructions we will find out there are advantages.

You can easily try out on your own, but what I am going to show you now is one case where

the advantages are not there, that is same number of instruction time or timelines will be

required of course, you will save in the number of intermediate registers that of course, will be

there, but I will show you where the timeline is similar.

777

(Refer Slide Time: 48:52)

So, what is the instruction? The instruction says that load some value from memory location

M to 𝑅1. So, the first stage is very similar program counter out memory register in, read, select

0 and add and of course, as again I told you there is nothing called 𝑍𝑖𝑛 or something because

in this case program counter values are available directly in the bus. So, that is the difference

already we have seen this one is avoided already we have discussed because as I told you in

some previous lecture, that instruction fetch concept is similar for all the instructions. So, that

will be very similar.

(Refer Slide Time: 49:31)

778

Similarly, you have to wait for program count in and wait till the data or the instruction in this

case comes to the memory data register. Of course, there will be no 𝑍𝑜𝑢𝑡 already discussed and

finally, the memory data outB will go to 𝑅𝑖𝑛 there is a slight difference here. So, generally in

the when you are having a single bus architecture we have memory data out, but here we are

having memory data outB that is the memory data should be giving the output to memory bus

B.

So, in this case as you have multiple buses. So, we generally make it explicit, otherwise because

in our architecture we could have also avoided it because out memory data register if you look

at is just connected to basically single output.

(Refer Slide Time: 50:03)

So, the memory data register we are connecting to both A and B. So, in this case you have to

explicitly specify that where you have to go connect basically because we have to go to

instruction register and instruction register is basically connected to B. So, in this case we are

saying 𝑀𝐷𝑅𝑜𝑢𝑡𝐵.

So, as I told you we can it is up to you, you can also have slight changes also you can also have

something like then it will be slightly different you can take the program counter to B

instruction register will come over here and then MDR can load over here. So, slight

flexibilities you can do. So, in this architecture as you have seen, so the instruction register is

connected to bus B. So, you have to tell 𝑀𝐷𝑅𝑜𝑢𝑡𝐵. But in a single bus architecture 𝑀𝐷𝑅𝑜𝑢𝑡

means 𝑀𝐷𝑅𝑜𝑢𝑡 right. So, we were here. So, basically now v is going to the instruction register.

779

Now, now it is done. So, the now the instruction that is a 𝑙𝑜𝑎𝑑 𝑅1, 𝑀 that has come to the

instruction register now things will basically be different from the previous instruction we have

considered. Now what? Now basically your instruction decoder has to tell the address of M

and it will has again has to go to the memory address register. That is why we are saying that

IR out is going to the memory address register in, now it will read the data.

Here one thing we have to know that basically instruction register actually contains the whole

thing, but with slight abuse of notation, we are just saying that the instruction decoder is going

basically we are saying that 𝐼𝑅𝑜𝑢𝑡 the whole IR means the whole thing, but actually want to

just look at this M. So, the instruction register decoder basically gives this value to the memory

address register this part, but we are not explicitly writing it over here, because then you should

have written something like instruction decoder out and that also for this part.

So, that is that can be very easily implemented, but for ease of notion similar type of notation

I am keeping the things simple, we just write an instruction register out and memory address

register in. In fact, it is basically instruction decoder out which is actually considers only the

M part it. Anyway with this notation simplicity let us take it through. So, the instruction register

out that is the value of M will go to the memory address register in and then you have to read

the memory and you have to wait for some amount of time.

In case of a basically a single bus architecture, this would remain the same instruction register

out memory in and read. Basically as I again emphasize here because we are having a single

memory system and at the same amount and then and at the same time basically you are also

not having multiple memories, and a single instruction execution at a time. So, when you are

taking a data from the memory or instruction from the memory, this type of instructions the

control signals will be similar both for three bus as well as a single bus architecture right.

So, in this case the value will be read from the instruction register to the memory address

register.

780

